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1 Introduction

This paper proposes a tractable, continuous time model of sovereign partial default, building
on the theoretic-quantitative work of Arellano, Mateos-Planas, and Rı́os-Rull (2023). We solve
our model using the implicit upwind finite difference scheme as in Hurtado, Nuño, and Thomas
(2023).

The standard theory of sovereign default, under incomplete markets and lack of commitment,
as introduced by Eaton and Gersovitz (1981) and quantified by Aguiar and Gopinath (2006) and
Arellano (2008), assumes that default is a discrete choice which is taken with respect to the entire
stock of outstanding debt.1 By choosing to default, the sovereign transitions into a separate
regime, characterized by international financial market exclusion and specific resource or utility
costs. Eventually, the sovereign returns to market access with either no outstanding obligations
or a debt level lower than that at the time of default, as determined by renegotiation with its
lenders.2 In contrast, the theory of partial default developed by Arellano, Mateos-Planas, and
Rı́os-Rull (2023) is consistent with the observations that sovereigns often discriminate between
their creditors, selectively suspending debt service payments on only some instruments, and
that debt levels rise during default crises, including due to the issuance of new obligations,
with countries sometimes owing more at the end of such episodes than at their outbreak. In
this theory, as in the data, missed payments accumulate as arrears and further deteriorate the
fiscal sustainability outlook. Arellano, Bai, and Mihalache (2023) employ this theory to study
the budgetary impact of the COVID-19 epidemic in emerging markets, its interaction with costly
mitigation measures, and to simulate debt relief programs and counterfactuals.

Our paper relates to the recent body of work on quantitative sovereign default models in con-
tinuous time. Bornstein (2020) compares discrete and continuous time versions of the textbook
default model and finds that computation is faster in continuous time.3 He identifies a painful
deleveraging effect specific to such settings, where the stock of debt is slow-moving, and provides
results on the relationship between equilibrium default and debt maturity, including the possi-
bility of positive default risk with short-term debt if the shock is a jump process. Tourre (2017)
focuses on the macro-financial implications of the standard, complete default model, by studying
a setting with recursive utility and a rich pricing kernel for international lenders, which allows
him to connect the model with the cross-country comovement of spreads in the data. Finally,
Hurtado, Nuño, and Thomas (2023) is the paper closest to our work. They study a standard
sovereign default model, with long-term debt denominated in local currency and thus exposed
to the exchange rate depreciation induced by the government’s choice of inflation. This use of

1. Textbook treatments of this sovereign default framework are provided by Uribe and Schmitt-Grohé (2017) and
Aguiar and Amador (2021). The handbook chapter of Aguiar et al. (2016) surveys key extensions of the model,
including the possibility of self-fulfilling crises.

2. Models with renegotiation and recovery generally build on the frameworks of Yue (2010) or Pitchford and Wright
(2012). Recent examples include Mihalache (2020) and Dvorkin et al. (2021).

3. Rendahl (2022) discusses the extent to which similar results can be obtained in discrete time by adapting the
sparse matrix methods at the core of the solution for continuous time.
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inflation as a mechanism for reducing the real value of the debt resembles the notion of partial
default studied here, with the caveat that inflation lowers the real value of the entire stock of
outstanding debt whereas partial default applied only to the debt service flow.

We propose a computational algorithm by following precedents in the default literature, Born-
stein (2020) and Hurtado, Nuño, and Thomas (2023), who adapt the methods introduced by
Achdou et al. (2022) to models with full default. Unlike them, we find that the partial default
model does not require the formulation and solution of optimal stopping time problems, with
associated HJB variational inequalities, as there are no discrete transitions between the regimes of
normal market access and market exclusion during default. With partial default, there is a single
value function and an unique set of policy functions, possibly discontinuous, which characterize
equilibrium outcomes at all times. This greatly simplifies the theoretical and numerical analysis
of the model and provides a natural setting for further extensions.

The literature has not restricted attention to quantitative models. Continuous time methods
have also been at the forefront of more theoretical analyses of default, including work on debt
maturity and multiplicity of equilibria by Aguiar and Amador (2020) and reputation by Amador
and Phelan (2021, 2023).

Our model successfully replicates key findings of Arellano, Mateos-Planas, and Rı́os-Rull
(2023). The impulse response of our model exhibits a hum-shaped pattern in both partial default
and debt under a negative income shock. Moreover, our simulation results suggest that, when
regaining market access, the sovereign typically carries a higher level of debts than at the point
of entering the default episode. Because partial default is an easier way to raise funds, the
sovereign tends to rely more on partial defaults than on new issuance of debts, leading to a
rapid accumulation of arrears during default episodes. The accumulation of debts causes the
sovereign to optimally choose a higher default intensity which results in a protracted default
episode. We also quantitatively check the possibility of voluntary restructuring under the partial
default setup.

The rest of the paper proceeds as follows. Section 2 presents the model, characterizes policies
and bond prices, and defines the equilibrium, Section 3 delivers the quantitative analysis of the
model, and Section 4 concludes. Appendices include proofs and derivations omitted from the
main text, a discussion of our numerical algorithm, and additional tables and figures.

2 Model

We formulate a continuous time version of the partial default, real endowment model of Arellano,
Mateos-Planas, and Rı́os-Rull (2023), henceforth Arellano, Mateos-Planas, and Rı́os-Rull (2023).
The economy consists of a risk-averse sovereign and a unit measure of competitive, risk-neutral
international investors. We describe their problems in turn and define the equilibrium.
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2.1 The Sovereign

The sovereign of a small, open economy receives an endowment stream, can borrow internation-
ally, and can choose what fraction of the its owed debt service it wants to pay.4 The part of the
debt service payment that the sovereign chooses not to make accumulates as arrears, increasing
the stock of debt.

The sovereign’s objective is given by discounted lifetime consumption, E0
∫ ∞

0 e−ρtu (ct) dt,
where ρ is the sovereign’s discount rate. Its stock of debt is denoted by Bt. This long-term
debt matures at rate δ and each outstanding unit calls for a coupon payment λ, so that the debt
service scheduled by the outstanding debt is given by (δ + λ) Bt.5 The sovereign chooses a share
dt ∈ [0, 1] of the debt service which it does not pay, and instead accumulates a multiple of it as
arrears. Each unit of payment not made increases the stock of debt by κ units. The magnitude of
the κ parameter controls the haircut suffered by lenders.

The sovereign’s flow budget constraint is given by

ct = ϕ (dt, zt) ezt − (1 − dt) (δ + λ) Bt + qtℓt. (1)

The three terms on the right hand side correspond to the sovereign’s income (ϕ (dt, zt) ezt ), the
share of the debt service payment made ((1 − dt) (δ + λ) Bt), and the proceeds from the sale of
new bond units (qtℓt), respectively.

The sovereign’s income is the product of two components, an exogenous endowment process
ezt and a default penalty function ϕ(dt, zt). We assume that zt follows a Ornstein–Uhlenbeck
process dzt = −µztdt + σdWt with reflecting barriers at z and z. We include a brief discussion
of the compound Poisson process case in the Appendix. The penalty function is decreasing and
concave in dt, and satisfies ϕ(0, zt) = 1 and ϕ(1, zt) > 0, for any zt. We assume the presence of a
fixed cost, so that default of any intensity leads to a discrete loss of income. As a consequence,
ϕ(dt, zt) is not differentiable at dt = 0. Following Arellano, Mateos-Planas, and Rı́os-Rull (2023),
we allow for the cost to be a function of zt as well, and assume ϕ(dt, zt) is weakly decreasing in
zt, default is more costly when the endowment is higher.

The sovereign issues ℓt units of new debt and receives a market price qt, to be determined
by the bond pricing problem of the lenders. Unlike traditional sovereign default models with
a discrete choice of default, the sovereign never loses access to financial markets and is able to
issue new bond units at any time, albeit at a price which reflects the prospects for repayment
going forward. When ℓt is negative, we interpret it as the sovereign buying back outstanding
instruments in secondary markets.

4. We maintain the standard assumptions of centralized borrowing and centralized default, so that we do not make
explicit the behavior of the private sector and the policy instruments which enable the sovereign to implement its
preferred outcomes. For the case of decentralized borrowing, see Kim and Zhang (2012).

5. This approach to long-term debt is the continuous time counterpart of the structure employed by standard
default models, in order to economy on state variables, for example Hatchondo and Martinez (2009), Chatterjee and
Eyigungor (2012), or Hatchondo, Martinez, and Sosa-Padilla (2016).
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The evolution of the stock of debt is governed by the drift

dBt

dt
= ℓt − δBt + κ (δ + λ) dt Bt, (2)

where the three terms on the right hand side capture the change in debt due to new issuance (ℓt),
the amortization of maturing debt (δBt), and the accumulation of arrears, if the sovereign chose
to default on some of the owed debt service payments (κ (δ + λ) dt Bt).

It will be useful to substitute out the new issuance from the sovereign’s flow constraint into
the drift of debt, to obtain a new expression for the drift, which we denote by S, as

S(Bt, zt, ct, dt, qt) ≡
ct − ϕ (dt, zt) ezt

qt
+

[(
1
qt

+

(
κ − 1

qt

)
dt

)
(δ + λ)− δ

]
Bt.

S =
1
q
(c − ϕ(d, z)ez + (1 − d)(λ + δ)B) + (κd(δ + λ)− δ)B

Given the initial stock of debt B0 and the endowment level z0, the sovereign’s problem is
summarized by

V(B0, z0) = max
{ct,dt}t∈[0,∞]

E0

{∫ ∞

0
e−ρtu(ct)dt

}
s.t.

dBt

dt
= S(Bt, zt, ct, dt, qt)

with an associated HJB equation given by

ρV(B, z) = max
c, d∈[0,1]

{
u(c) + S(B, z, c, d, q)VB(B, z)− µzVz(B, z) +

σ2

2
Vzz(B, z)

}
. (3)

Throughout, B and z subscripts denote the partial derivative with respect to the state variable.

First-order Conditions. We characterize the solution to the maximization problem on the right
hand side of the HJB equation with the help of first-order conditions. For consumption, c, the
condition is given by uc(c) +

VB(B,z)
q(B,z) = 0, which allows us to express optimal consumption as a

function of the bond price schedule and the value function, as

c∗(B, z) = u−1
c

(
−VB(B, z)

q(B, z)

)
. (4)

If the optimal choice of default intensity is interior, a point to which we return momentarily,
it must satisfy [ezϕd(d, z)− (κ q(B, z)− 1)(δ + λ)B] VB(B, z) = 0 which can be inverted for the
optimal intensity, accounting for the upper bound d ≤ 1,

d∗int(B, z) = min
{

1, ϕ−1
d

(
(κ q(B, z)− 1) (δ + λ)

B
ez , z

)}
. (5)
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As the ϕ(d, z) function is discontinuous at d = 0, the optimal default intensity is either
d∗(B, z) = 0 or d∗(B, z) = d∗int(B, z), depending on which of these two options maximizes the
right hand side of the HJB equation. This reduced to the choice with the smallest associated drift
S, given c, as VB is negative:

d∗(B, z) =

d∗int(B, z) , if S(B, z, c, d∗int(B, z), q)VB(B, z) ≥ S(B, z, c, 0, q)VB(B, z)

0 , otherwise
(6)

The comparative statics of the optimal interior default intensity are summarized by the fol-
lowing Proposition, the proof of which is relegated to the Appendix:

Proposition 1. The optimal interior default intensity d∗int is a) weakly increasing in the level of debt B, b)
weakly decreasing in the bond price q, and c) weakly decreasing in the endowment level z.

2.2 International Lenders

A unit measure of deep-pocketed, competitive, risk-neutral international lenders buy and hold
the sovereign’s bonds. They have an outside option given by a risk-free rate r. At any point in
time, each unit of debt held by the investors will generate a flow payment (δ + λ)(1 − d) and
arrears in the form of new debt units, given by κ(δ + λ)d. The unit price which allows lenders to
break even is given by

qt = Et

∫ ∞

t
e−(r+δ)(s−t)+

∫ s
t κ(δ+λ)dτdτ(δ + λ)(1 − ds)ds.

Applying Feynman-Kac, the bond price satisfies

ξ(d)q(B, z) = (1 − d)(λ + δ) + S̃(B, z)qB(B, z)− µzqz(B, z) +
σ2

2
qzz(B, z), (7)

where S̃(B, z) ≡ S(B, z, c(B, z), d(B, z), q(B, z)) is the equilibrium drift of the B state and ξ(d) ≡
r + δ − κ(δ + λ)d is the effective discounting for individual bond units, which we introduce
to simplify notation. It reflects the lenders’ opportunity cost (r), the maturity structure of the
debt (δ), and the arrears induced by default. While the evolution of the overall stock of debt is
government by the equilibrium drift S̃(B, z), the cash flow of a single outstanding unit is shaped
by ξ(d), which account for default intensity and the accumulation of arrears, but which does not
include new issuance by the sovereign.

Spreads and Debt Duration. Before defining the equilibrium, it is useful to introduce several
measures. The default risk-free bond price is given by qrf =

∫ ∞
0 e−(r+δ)t (δ + λ) dt = δ+λ

δ+r while
the yield to maturity implied by the bond price qt is rt =

δ+λ
qt

− δ.
The spread is the difference between the yield to maturity of the risky bond, subject to partial

default, and the corresponding risk-free instrument, spreadt = rt − r = δ+λ
qt

− (δ + r).
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Finally, the risk-free Macaulay duration of the bond is D = 1
qrf

∫ ∞
0 e−(r+δ)t(δ + λ)t dt = 1

δ+r .

2.3 Equilibrium

A Markov Perfect Equilibrium consist of

a) the sovereign’s value function V(B, z),

b) policy functions for consumption and default, c∗(B, z) and d∗(B, z), and

c) the bond price function q(B, z),

such that

1. given q(B, z) and V(B, z), the policies satisfy FOCs (4) and (5) and condition (6),

2. given q(B, z) and the policies, the sovereign’s value satisfies the HJB equation (3). and

3. given policy functions, the bond price function satisfies equation (7).

3 Quantitative Analysis

We now turn to the quantitative analysis of our model. Whenever possible we rely on the param-
eter values in Arellano, Mateos-Planas, and Rı́os-Rull (2023) and we compute our model using
first the upwind finite difference scheme of Achdou et al. (2022), as in Hurtado, Nuño, and Thomas
(2023). Appendix D describes out algorithm and its implementation.

3.1 Calibration

We will follow the functional form assumptions of Arellano, Mateos-Planas, and Rı́os-Rull (2023)
and impose the constant elasticity of intertemporal substitution utility function

u (ct) =


c1−ν

t
1−ν if ν ̸= 1

log ct if ν = 1

and the default cost function

ϕ (dt, zt) =
(
1 − γ0dγ1

t
) [

1 − (zt − z̃) γ21{dt>0, zt≥z̃}
]

with γ0 > 0, γ1 > 1, and γ2 > 0. Any strictly positive default intensity leads to a loss of a share
(zt − z̃)γ2 of income, but only if zt exceeds z̃, plus any loss given by γ0dγ1

t , a convex function of
default intensity.

We divide parameters into three sets: first, parameters set to the (continuous time equivalents
of) values in Arellano, Mateos-Planas, and Rı́os-Rull (2023), second, the parameters of the endow-
ment process, and finally, third, parameters we set as part of a moment-matching exercise. Table
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Table 1: Calibration

Parameter Value Comment

Adapted from Arellano, Mateos-Planas, and Rı́os-Rull (2023)
ν 2.000 Relative risk aversion
ρ 0.047 Sovereign’s discount rate
δ 0.120 Bond duration
κ 0.700 Haircut
r 0.039 International risk-free rate
λ r Normalization

Endowment Process
µ 0.225

Time aggregation to AR(1)
σ 0.075

Default Penalty
γ0 0.020

Moment-matching, Table 2
γ1 2.000
γ2 3.500
z̃ 0.015

Notes: . . .

1 compiles the resulting values. The parameters we adopt from Arellano, Mateos-Planas, and
Rı́os-Rull (2023) are the coefficient of relative risk aversion ν, the discount rate of the sovereign ρ

and the risk-free rate r, the parameter controlling bond duration δ, and the haircut parameter κ.
We fix λ = r as to normalize the risk-free bond price qrf to 1.

We set the parameters of the endowment process, µ and σ, so that when we simulate our
process and time-aggregate it to yearly observations, the resulting annual series is well-fitted by
the AR(1) discrete time endowment process of Arellano, Mateos-Planas, and Rı́os-Rull (2023).

The final set of 4 parameters, which govern the penalty function ϕ(dt, zt), is used to replicate
key moments in the data: the mean and standard deviation of spreads, the average debt to output
ratio, and the ratio of the standard deviation of consumption to that of output. Table 2 reports the
fit of the model. The data moments are from Table 4 of Arellano, Mateos-Planas, and Rı́os-Rull
(2023). The moments of model are computed using the ergodic distribution.

3.2 Equilibrium Policies and Moments

The model’s solution under parameterization is given as plotted value function and price func-
tion in Figure 1. The value of the sovereign increases in z and decreases in B. We find that the
rate of value increase with respect to z is higher than the rate of decrease with respect to B when
z is low. Conversely, when z is high, the value changes more sensitively in B than in z. The bond
price tends to be low when z is low and B is high, aligning with the sovereign’s propensity to
opt for higher default intensities under these conditions.

The value function and price function can be better understood with the sovereign’s equilib-
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Table 2: Moments in Data and Model

Moment (%) Data Model

Partial default
frequency 0.36 0.56
mean | partial default>0 0.38 0.50
st. dev | partial default>0 0.22 0.16

Debt to output
mean 0.32 0.40
st. dev 0.18 0.27

Debt service to output
mean 0.036 0.016
st. dev 0.021 0.024

Debt due to output
mean 0.049 0.037

Defaulted coupons to output
mean | partial default>0 0.052 0.049
st. dev | partial default>0 0.064 0.029

Spread
mean 0.053 0.016
st. dev 0.041 0.001
corr with output -0.17 -0.91
corr with debt 0.24 0.08

Output
persistence 0.89 0.89
st. dev 0.10 0.10

Consumption
st. dev 0.10 0.08

Notes: . . .
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(a) Value Function V(B, z) (b) Bond Price q(B, z)

Figure 1: Equilibrium Values and Bond Prices

rium policies plotted in Figure 2. The default cost function having a fixed default cost when z > z̄
results in distinct default intensity behavior depending on the value of z. When z < z̄, the default
cost is (1 − γ0dγ1) and is independent of z. Given the marginal cost of default is 0 when d = 0,
the sovereign always chooses positive default intensity. The sovereign raises the default intensity
until the additional resources released from debt service payment exactly compensate the cost
of default. Consequently, the optimal default intensity gradually increases as B increases and
reaches complete default when B is high enough. On the other hand, when z > z̄, the sovereign
pays fixed cost of default, and the fixed cost is proportional to z − z̄. The fixed cost of default
yields an inaction zone in low-B area, and because the fixed cost is larger for higher z, inaction
zone is broader in the high-z region.

The shape of price function is mainly determined by the optimal default intensity. When z
is high and the sovereign does not partially default, the bond price remains relatively stable as
increase in B. In contrast, in the low-z region, the default intensity increases sharply, leading to
a rapid decline in the bond price.

The overall shapes of optimal default intensity and bond price shape the optimal consumption
policy. Due to the fixed cost of default, the sovereign does not use the partial default as borrowing
when z is high. Consequently, the consumption drops sharply as the debt service payments are
non-defaulted in high B values. For low z, the optimal consumption exhibits a relatively slower
decline with respect to B. This is because the sovereign partially defaults and allocates more
resources to consumption. However, the bond price shows a steep drop, particularly near the
point where the default intensity reaches full default. This sharp drop in bond prices restricts
consumption when B is high.
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(a) Default Intensity d(B, z) (b) Consumption c(B, z)
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(c) Drift S(B, z)

Figure 2: Equilibrium Policy Functions
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The equilibrium drift of debt obligation, computed based on the bond price, default intensity
, and consumption , is illustrated as a contour plot in (c) of Figure 2. The drift represents the
rate at which debt obligation is increased or decreased at each point. We find that the drift of
debt obligation is positive and high at points where default intensity is high. Specifically, in the
region where both B and z are low, total debt obligation accumulates as the sovereign chooses to
partially default. The rate of debt accumulation is faster when either B is low or z is low.

Another noteworthy aspect of the figure is the presence of positive drifts in the region of
low-z and high-B. In the region, the optimal default intensity is high, leading to a sharp drop in
the bond price. After the steep drop, bond prices remain relatively stable at high-B levels, which
leads to high consumption and a high drift of debt obligation. We hypothesize that the existence
of this positive drift region is why we see lengthy default episodes under the sovereign’s partial
defaults. Once the region is reached, the sovereign should increase the default intensity, leading
to a faster accumulation of arrears, which is followed by another high default intensity.

3.3 Impulse Response Functions and Arrears Accumulation

In this subsection, we study impulse response functions of various variables to better understand
the model’s mechanisms. We simulate on daily basis the impact of a one-period negative shock.
The sovereign is initially situated at the mean of ergodic distribution. Figure 3 presents the
model’s response.

Following the negative shock in the first period, the income begins to rebound. Consumption
falls and starts to recover as the income returns back to the steady state, but the fluctuation
is smaller due to consumption smoothing. Upon arrival of the negative income shock, The
sovereign gradually increases the default intensity as arrears from defaults accumulate to a higher
level of debts. The default intensity arrives at the peak in 4 years and decreases afterwards
following a significant recovery in the income.

In panel (d) and (e), it can be found that the accumulation of arrears largely shapes the
increase in debts. The size of arrears is determined by the default intensity and the size of debts;
(a = κd(λ + δ)B). In the first 4 years, the sovereign opts for high default intensities, resulting in
a high level of arrears. Arrears slightly increase because of the high level of debts even after the
sovereign reduces the default intensity. The decline in arrears after 5 years of simulation drives
the total debts back to the steady state.

We examine whether the partial default serves as the primary source of borrowing rather than
issuing new bonds during the simulation. Panel (f) compares the size of defaulted payments to
that of newly issued debts. In the early stage of simulation, new issuance is predominantly used
due to the low default intensity, which is a result of a low level of debts. However, as the total
debts accumulate, the partial default on the debt due emerges as the primary financing source.
New issuance of debts reverts to the primary source of finance only after the income recovers
significantly.
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3.4 The Ergodic Distribution and the Length of Default Episodes

One of the advantages of continuous time modeling is easy computation of ergodic distribu-
tion. Let f ∗(B, z) denote the probability distribution function over states (B, z) in the ergodic
distribution. Given the equilibrium policy functions c∗(B, z) and d∗(B, z), we can write the Kol-
mogorov forward equation(KFE) that governs the stationary equilibrium distribution as follows.
The derivation of equation is provided in the Appendix.

0 = − ∂

∂B
[
S̃(B, z) f ∗(B, z)

]
+

∂

∂z
[µz f ∗(B, z)] +

σ2

2
∂2

∂z2 f ∗(B, z). (8)

The ergodic distribution can be solved directly from (8) without a long run simulation of the
model. Moreover, (8) is the adjoint problem of HJB equation (3). In the discretized computational
algorithm, the matrix that is used to solve HJB equation is reused to formulate and solve KFE. A
more detailed exposition of the computation algorithm can be found in the Appendix as well.

Figure 4: Ergodic Distribution

Figure 4 illustrates the ergodic distribution of the model. We observe a polarized distribution
between low-B/high-z and high-B/low-z regions. This distribution is largely shaped by the drift
of debt obligation. Because the drift of debt is negative when z is high, a substantial mass is
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concentrated at low-B/high-z region. For low values of z, the high default intensities of the
sovereign causes the debt obligations to drift to a higher level, until a pronounced drop in the
bond price occurs. At the points where the quick drop in bond price occurs, the drift turns
negative and prevents further growth of debt. Consequently, a large mass is located near the
bond price drop region when z is low.
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Figure 5: Outcomes is Simulated Default Episodes

We conduct a simulation of the model over a span of 10,000 years and analyze the length
of default episodes and changes in debt during these episodes. A consecutive series of periods,
where default intensities are non-zero at all times and the duration extends beyond a year, is
identified as a default scenario. Total 970 episodes are identified in our simulation. Figure 5 (a)
shows the distribution of the length of default episodes conditional on the length exceeds a year.
Most of episodes terminate in 10 years, but still 8.76% episodes show the length longer than 10
years. The average length of simulated episodes is 4.17 years, and standard deviation is 3.99
years.

We also report the rise in debt levels during the episodes. The distribution is skewed posi-
tively, indicating that the debt level increases in most simulated episodes. This is consistent with
the observations that the sovereign returns to market access with a higher level of debt than at
the time of default. The average increase in debts is 0.074 and the standard deviation is 0.098.

When a substantial size of negative shock arrives, arrears start to accumulate because the
sovereign opts for partial default. The sovereign regains access to market when the income
recovers enough, but with a higher level of debts.

3.5 Voluntary Restructuring

We examine if there’s room for voluntary restructuring of debt. Debtor and creditor can reach a
voluntary restructuring if an unexpected reduction of debt level can benefit both parties. Given
the sovereign’s value decreases in B, such a restructuring can happen if the reduction of debt can
improve the total market value of debt q(B, z)× B.
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Figure 6: Market Value of Debt

As long as the bond price does not decrease sharply, a positive drift of debt enhances the
lenders’ value. In contrast, if the bond price drops more rapidly than the growth in debt, lenders
can agree with a voluntary reduction in debt. As illustrated in Fig 1 (b), there is a significant
price drop when z is low but B is high, which creates an opportunity for voluntary restructuring.

Figure 6 shows the indifference curves for risk-neutral international lenders. An upward
sloping region of an indifference curve suggests that reducing the total debt obligation is advan-
tageous for international lenders. This implies the feasibility of a one-time, mutually agreeable
debt relief policy for the sovereign using partial defaults.

4 Concluding Remarks

We formulated a tractable model of the sovereign partial default in continuous time setup and
suggested a computational algorithm for it. Our model successfully replicates the key findings of
Arellano, Mateos-Planas, and Rı́os-Rull (2023) such as lengthy default episodes and the dynamics
of default episode. Given that HJB equation and price equation are written in simple partial
differential equations, the continuous time model is a good avenue to apply deep neural network
computational methods. This approach enables the incorporation of a larger state space and
more complex models, such as voluntary restructuring initiated by the sovereign. We plan to
explore theses in future work.
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Appendix to

“Sovereign Partial Default in Continuous Time”

by Sangdong Kim and Gabriel Mihalache

A Omitted Derivations and Proofs

Derivation of HJB equation (3). The sovereign’s problem is

V(B0, z0) = max
{ct,dt}t∈[0,∞]

E0

{∫ ∞

0
e−ρtu(ct)dt

}
s.t.

dBt

dt
= S(Bt, zt, ct, dt, qt)

Note that with small enough time interval ∆t,

V(B0, z0) = max
{ct,dt}t∈[0,∞]

E0

{∫ ∞

0
e−ρtu(ct)dt

}
= max

{ct,dt}t∈[0,∞]

E0

{
u(c0)∆t + e−ρ∆tV(B∆t, z∆t)

}
(9)

Taylor expansion of E0V(B∆t, z∆t):

E0V(B∆t, z∆t) = V(B0, z0) + VB(B0, z0)∆b + Vz(B0, z0)E0∆z +
1
2

Vzz(B0, z0)E0(∆z)2 + o(∆t)

= V(B0, z0) + VB(B0, z0)S(B0, z0, c0, d0, q0)∆t − µz0Vz(B0, z0)∆t +
σ2

2
Vzz(B0, z0)∆t + o(∆t)

(10)

Plugging (10) into (9) and taking limitation of ∆t → 0 gives (3).

Proof of Proposition 1. The proof is straightforward from the decreasing property of ϕ(d, z). For
any B1 ≥ B2, d1 and d2 that satisfies

ezϕd(di, z)− (κq − 1)(δ + λ)Bi = 0, i = 1, 2

should also satisfy d1 ≥ d2 since ϕd(d, z) ≤ 0. Then, d∗int(B1, z) = min{1, d1} ≥ min{1, d2} =

d∗int(B1, z). The proof is similar for b) and c).

Derivation of q equation (7). The price of one unit of real bond is

q(Bt, zt) = Et

∫ ∞

t
e−(r+δ)(s−t)+

∫ s
t κ(δ+λ)dτdτ(δ + λ)(1 − ds)ds.
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Again, fix a small enough time interval ∆t.

q(Bt, zt) =
∫ t+∆t

t
e−(r+δ)(s−t)+

∫ s
t κ(δ+λ)dτdτ(δ + λ)(1 − ds)ds + e−(r+δ)∆t+

∫ t+∆t
t κ(δ+λ)dτdτq(Bt+∆t, zt+∆t)

≈(δ + λ)(1 − dt)∆t + e−[r+δ−κd(δ+λ)]∆tq(Bt+∆t, zt+∆t)

Define ξ(d) = r + δ − κd(δ + λ) for notational simplicity. By the same Taylor expansion as in (10)
and taking limitation of ∆t → 0, we get (7).

Derivation of KFE (8). Let x = (B, z) and ∆x = (∆B, ∆z), where ∆B = S̃(x)∆T, ∆z =

−µz∆t + σdW∆t for a short time interval ∆t.
f (x, t) is the pdf in time t. The pdf evolves over time by the following equation.

f (x, t + ∆t) = f (x, t) +
∫

∆x
Tt(x − ∆x, ∆x) f (x − ∆x, t)dx1dx2 −

∫
∆x

Tt(x, ∆x) f (x, t)dx1dx2

Here, Tt(x, y) is the rate of transition from x to x + y at a point in time t. The pdf at point x in
time t + ∆t should be the pdf at the same point in time t plus the sum of all inflows less the sum
of all outflows.

Fix a vector ∆x. With the fixed ∆x, define a function g∆x(x, t) by

g∆x(x, t) = Tt(x, ∆x) f (x, t).

The Taylor expansion of g∆x(x, t) gives

g∆x(x − ∆x, t) = Tt(x − ∆x, ∆x) f (x − ∆x, t)

= Tt(x, ∆x) f (x, t) + (−1)× ∆B
∂

∂B
[Tt(x, ∆x) f (x, t)] + (−1)× ∆z

∂

∂z
[Tt(x, ∆x) f (x, t)]

+
1
2
(∆B)2 ∂2

∂B2 [Tt(x, ∆x) f (x, t)] +
1
2
(∆z)2 ∂2

∂z2 [Tt(x, ∆x) f (x, t)]

+ (∆B)(∆z)
∂2

∂B∂z
[Tt(x, ∆x) f (x, t)] + h.o.t

Plugging this into the first equation gives

f (x, t + ∆t)− f (x, t)
∆t

=
1

∆t

∫
∆x
(−1)× ∆B

∂

∂B
[Tt(x, ∆x) f (x, t)] dx1dx2

+
1

∆t

∫
∆x
(−1)× ∆z

∂

∂z
[Tt(x, ∆x) f (x, t)] dx1dx2

+
1

∆t

∫
∆x

1
2
(∆B)2 ∂2

∂B2 [Tt(x, ∆x) f (x, t)] dx1dx2

+
1

∆t

∫
∆x

1
2
(∆z)2 ∂2

∂z2 [Tt(x, ∆x) f (x, t)] dx1dx2

+
1

∆t

∫
∆x
(∆B)(∆z)

∂2

∂B∂z
[Tt(x, ∆x) f (x, t)] dx1dx2 + h.o.t
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Integration
∫

∆x can flip the order with partial differentiation. We use

∆B = S̃(B, z)∆t,

∆z = −µz∆t + σdW∆t,

(∆z)2 = σ2∆t.

When ∆t is sufficiently small, ignoring the terms of ∆t order higher than 1,

∂

∂t
f (x, t) = − ∂

∂B
[
S̃(x) f (x, t)

]
+

∂

∂z
[µz f (x, t)] +

σ2

2
∂2

∂z2 f (x, t)

In the stationary distribution ft(x, t) should be zero. This gives the KFE for stationary distribution

0 = − ∂

∂B
[
S̃(x) f (x)

]
+

∂

∂z
[µz f (x)] +

σ2

2
∂2

∂z2 f (x).

B The Compound Poisson Process Case

In the main text, we restricted attention to an Ornstein–Uhlenbeck endowment process zt. We
have also solved our model for the case of jumps, where zt switched with a constant intensity
between two or more discrete levels, with similar qualitative properties. We conjecture that
our environment can accommodate an endowment process with both jumps and a diffusion
component.

In this Appendix, we lay out the result of the model with jump process of endowment. We
model z as a switch between two different levels of endowment. The switch occurs at Poisson
arrival rate of η. Every other model component remains intact as in the main text. The HJB
equation of the sovereign is

ρV(B, zi) = max
c,d

u(c) + S(B, z, c, d, q)VB + η (V(B, z−i)− V(B, zi)) ; i = 1, 2.

We solve for the sovereign’s value function using the implicit upwind finite difference scheme
the detailed exposition of which is presented in Appendix D.

Figure 7 shows the computational results. The sovereign’s value decreases in B and increases
in z. Similarly, the bond price decreases in B and increases in z. For the optimal default intensity,
when z is lower than the threshold z̄, which represents no fixed cost of default penalty, the de-
fault intensity gradually increases as B increases. However, for a higher level of z, the sovereign
refrains from defaulting until a certain level of debts is reached due to the fixed cost of default.
Beyond this point, the default intensity jumps up to a significant level and continues to gradually
increase when B increases. The bond price shows a sharp decline near the point the sovereign
completely defaults. The bond price schedule and default intensity together determine the opti-
mal consumption. When the drop of bond price is steep, the sovereign reduces the consumption
and debt obligations, leading to a lower drift. Conversely, when the marginal drop in bond price
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is small, the sovereign recovers the consumption, resulting in a higher debt drift.

C Discrete Time Case

V(B, z) = max
B′,c,d

u(c) + βEz′|zV(B′, z′)

s.t. c = ϕ(d, z)ez − (1 − d)(δ + λ)B + q(B′, z)ℓ

B′ = (1 − δ)B + κ(δ + λ)dB + ℓ

(11)

ϕd(d, z)ez + (δ + λ)B − q(B′, z)κ(δ + λ)B = 0 (Interior FOC d)

ϕd(dint, z) = [κq(B′, z)− 1](δ + λ)
B
ez

cint = ϕ(dint, z)ez − (1 − dint)(δ + λ)B + q(B′, z)(B′ − (1 − δ + κ(δ + λ)dint)B), if d = dint

c0 = ez − (δ + λ)B + q(B′, z)(B′ − (1 − δ)B), otherwise
(12)

q(B′, z) =
1

1 + r
Ez′|z

{
(δ + λ)(1 − D(B′, z′)) + [1 − δ + κ(δ + λ)D(B′, z′)]q(B(B′, z′), z′)

}
(13)

D Algorithm

D.1 The Implicit Upwind Finite Difference Scheme

Solution to HJB equation (3). We compute our model using the implicit upwind finite difference
scheme of Achdou et al. (2022), following Hurtado, Nuño, and Thomas (2023)’s application to
their discrete default model. Here, we provide details about the computation algorithm of solving
(3) and (7).

We descritize B state space into n grid points, z state space into m grid points and use the
notation Vi,j = V(Bi, zj), i = 1, 2, · · · , n and j = 1, 2, · · · , m. The derivative of V with respect to B
is numerically computed by either forward difference or backward difference, but the derivative
with respect to z is computed using forward difference.

∂B,FVij =
Vi+1,j − Vi,j

∆B
, ∂B,BVi,j =

Vi,j − Vi−1,j

∆B

∂zVi,j =
Vi,j+1 − Vi,j

∆z
, ∂zzVi,j =

Vi,j+1 + Vi,j−1 − 2Vi,j

(∆z)2

Given q(B, z) and a guess of value function Vk(B, z), we can compute the optimal consump-
tion using forward/backward difference from the first order condition (4). Denote consumption
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Figure 7: The Poisson Process Case

Notes: Vertical lines indicate the point where the drift of debts is zero.

A5



computed using forward difference by ck
F,i,j and consumption computed using backward differ-

ence by ck
B,i,j.

ck
F,i,j = u−1

c

(
−

∂B,FVk
i,j

q(B, z)

)
, ck

B,i,j = u−1
c

(
−

∂B,BVk
i,j

q(B, z)

)
.

Note that computation of d∗int does not require numerical approximation of VB as shown in (5).

d∗int,i,j = min
{

1, ϕ−1
d

(
(κq(Bi, zj)− 1)(δ + λ)

B
ezj

, zj

)}
Under each forward difference and backward difference, we determine the optimal default inten-
sity by comparing the flow value (right-hand-side of (3)) of the sovereign when it chooses d = 0
and d = d∗int. Specifically, the choice of default intensity changes the flow value only through a
change in the drift of B.

dk
F,i,j = arg max

d∈{0,d∗int,i,j}
S(Bi, zj, ck

F,i,j, d, q)∂B,FVk
i,j

dk
B,i,j = arg max

d∈{0,d∗int,i,j}
S(Bi, zj, ck

B,i,j, d, q)∂B,BVk
i,j

Since VB is negative, we are choosing the optimal default intensity from {0, d∗int,i,j} that minimizes
the drift of B.

With computed forward/backward optimal consumption and default intensity, we compute
the drift of B implied by forward/backward difference of Vn

B .

Sk
F,i,j = S(Bi, zj, ck

F,i,j, dk
F,i,j, q)

Sk
B,i,j = S(Bi, zj, ck

B,i,j, dk
B,i,j, q)

The upwind scheme is to use the forward difference to compute the derivatives of V wherever
Sk

F,i,j is positive and to use the backward difference wherever Sk
B,i,j is negative. If neither Sk

F,i,j >

0 nor Sk
B,i,j < 0, we find the optimal default intensity among {0, d∗int,i,j} that maximizes the

consumption while imposing zero drift of B. Denote the maximized consumption under zero
drift by ck

0,i,j.
The upwind finite implicit updating rule is shown in the equation below.

Vk+1
i,j = (1 − ρ∆t)Vk

i,j + ∆t
[

1Sk
F,i,j>0

{
u(ck

F,i,j) + Sk
F,i,j∂B,FVk+1

i,j

}
+ 1Sk

B,i,j<0

{
u(ck

B,i,j) + Sk
B,i,j∂B,BVk+1

i,j

}
+ 1Sk

i,j=0u(ck
0,i,j)− µzj∂zVk+1

i,j +
σ2

2
∂zzVk+1

i,j

]
.
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From forward and backward difference formula,

Vk+1
i,j − Vk

i,j

∆t
+ ρVk+1

i,j =
[
1Sk

F,i,j>0u(ck
F,i,j) + 1Sk

B,i,j<0u(ck
B,i,j) + 1Sk

i,j=0u(ck
0,i,j)

]

+

[
−

1Sk
B,i,j<0

Sk
B,i,j

∆B ,
1Sk

B,i,j<0
Sk

B,i,j−1Sk
F,i,j>0

Sk
F,i,j

∆B ,
1Sk

F,i,j>0
Sk

F,i,j

∆B

] 
Vk+1

i−1,j

Vk+1
i,j

Vk+1
i+1,j



+
[

σ2

2(∆z)2 , µzj
∆z − σ2

(∆z)2 , − µzj
∆z + σ2

2(∆z)2

] 
Vk+1

i,j−1

Vk+1
i,j

Vk+1
i,j+1


In matrix notation,

Vk+1 − Vk

∆t
+ ρVk+1 = uk + AkVk+1

where

V =



V1,1

V2,1
...

Vn,1

V1,2
...

Vn,m


, uk =


1Sk

F,1,1>0u(ck
F,1,1) + 1Sk

B,1,1<0u(ck
B,1,1) + 1Sk

1,1=0u(ck
0,1,1)

1Sk
F,2,1>0u(ck

F,2,1) + 1Sk
B,2,1<0u(ck

B,2,1) + 1Sk
2,1=0u(ck

0,2,1)

...
1Sk

F,n,m>0u(ck
F,n,m) + 1Sk

B,n,m<0u(ck
B,n,m) + 1Sk

n,m=0u(ck
0,n,m)



and Ak ∈ M(n × m, n × m) is a sparse matrix. Elements of Ak for i = 1, 2, · · · n and j = 1, 2, · · ·m
are

Ak
(
(i − 1)m + j, (i − 1)m + j − n

)
=

σ2

2(∆z)2

Ak
(
(i − 1)m + j, (i − 1)m + j − 1

)
= −

1Sn
B,i,j<0Sn

B,i,j

∆B

Ak
(
(i − 1)m + j, (i − 1)m + j

)
=

1Sn
B,i,j<0Sn

B,i,j − 1Sn
F,i,j>0Sn

F,i,j

∆B
+

µzj

∆z
− σ2

(∆z)2

Ak
(
(i − 1)m + j, (i − 1)m + j + 1

)
=

1Sn
F,i,j>0Sn

F,i,j

∆B

Ak
(
(i − 1)m + j, (i − 1)m + j + n

)
= −µzj

∆z
+

σ2

2(∆z)2

The rule of updating value function is a sparse matrix equation.

Vk+1 =
[
(1 + ρ∆t) I − ∆tAk

]−1[
∆tuk + Vk

]
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Solution to q equation (7). We use the same implicit finite difference upwind updating to solve
the price equation (7). The sparse matrix constructed in solving HJB equation can be reused here.
With the same notations as in HJB equation, the discretized version of updating rule is

qk+1
i,j − qk

i,j

∆t
+ ξ(dk

i,j)q
k+1
i,j = (λ + δ)(1 − dk

i,j)

+

[
−

1Sk
B,i,j<0

Sk
B,i,j

∆B ,
1Sk

B,i,j<0
Sk

B,i,j−1Sk
F,i,j>0

Sk
F,i,j

∆B ,
1Sk

F,i,j>0
Sk

F,i,j

∆B

] 
qk+1

i−1,j

qk+1
i,j

qk+1
i+1,j



+
[

σ2

2(∆z)2 , µzj
∆z − σ2

(∆z)2 , − µzj
∆z + σ2

2(∆z)2

] 
qk+1

i,j−1

qk+1
i,j

qk+1
i,j+1


where

dk
i,j = 1Sk

F,i,j>0dF,i,j + 1Sk
B,i,j<0dB,i,j + 1Sk

i,j=0d0,i,j.

This can be rewritten in matrix notation.

qk+1 − qk

∆t
+ ξqk+1 = (λ + δ)dk + Akqk+1,

with

ξ = diag(ξ(d1,1), ξ(d2,1), · · · ξ(dn,m)) ∈ M(n × m, n × m),

q = [q1,1, q2,1, · · · , qn,m]
T,

dk = [1 − dk
1,1, 1 − dk

2,1, · · · , 1 − dk(n, m)]T,

and the same Ak as in the computation of HJB equation. The updating rule is

qk+1 =
[
(I + ξ∆t)− ∆tAk

]−1[
∆t(λ + δ)dk + qk

]

Ergodic distribution Kolmogorov forward equation is the adjoint problem of HJB equation. In
other words, if we write HJB equation as follows

ρV = u + AV,

Kolmogorov forward equation can be written as

0 = ATf.

We compute the ergodic distribution of (B, z) using the above fact. Specifically, if Ak is the sparse
matrix constructed in the last iteration of HJB updating, the ergodic distribution (f) can be found
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by solving 0 = (Ak)Tf.

Computation Algorithm. The entirety of algorithm is given below.

1. Begin with initial guess Vk
i,j and qk

i,j.

2. Compute {ck
X,i,j, dk

X,i,j, Sk
X,i,j}X∈{F,B,0} and update the value function to Vk+1

i,j .

3. Update the price function to qk+1
i,j .

4. If Vk+1
i,j is close enough to Vk

i,j and qk+1
i,j is close enough to qk

i,j, stop. Otherwise, iterate above
with new initial guess Vk+1

i,j and qk+1
i,j .

5. Solve Kolmogorov forward equation using A of the last iteration in value function updating.
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